Classification of linear and non-linear modulations using the Baum-Welch algorithm and MCMC methods
نویسندگان
چکیده
Satellite transmissions classically use constant amplitude linear modulation schemes, such as M-state phase shift keying (M-PSK), because of their high robustness to amplifier non-linearities. However, other modulation formats are interesting in a satellite transmission context. For instance, non-linear modulations such as Gaussian minimum shift keying (GMSK) present a higher spectral efficiency and appear in new standards for telemetry/telecommand satellite links. Another example is offset-QPSK (OQPSK) modulation that allows one to decrease the out-of-band interference due to band limiting and the non-linearity of the amplifier. To get a compromise between the robustness to amplifier non-linearities provided by MPSK modulation and the spectral efficiency given by QAM modulation, the recent broadcasting satellite standard (DVB-S2) proposes new modulation schemes called APSK. Obviously, all satellite systems that use various modulation schemes will have to co-exist. In this context, modulation recognition using the received communication signal is essential. In that context, this paper studies two Bayesian classifiers to recognize linear and non-linear modulations. These classifiers estimate the posterior probabilities of the received signal, given each possible modulation, and plug them into the optimal Bayes decision rule. Two algorithms are used for that purpose. The first one generates samples distributed according to the posterior distributions of the possible modulations using Markov chain Monte Carlo (MCMC) methods. The second algorithm estimates the posterior distribution of the possible modulations using the Baum–Welch (BW) algorithm. The performance of the resulting classifiers is assessed through several simulation results.
منابع مشابه
Comparing the Bidirectional Baum-Welch Algorithm and the Baum-Welch Algorithm on Regular Lattice
A profile hidden Markov model (PHMM) is widely used in assigning protein sequences to protein families. In this model, the hidden states only depend on the previous hidden state and observations are independent given hidden states. In other words, in the PHMM, only the information of the left side of a hidden state is considered. However, it makes sense that considering the information of the b...
متن کاملComparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura
Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...
متن کاملGeneralized Baum-Welch and Viterbi Algorithms Based on the Direct Dependency among Observations
The parameters of a Hidden Markov Model (HMM) are transition and emission probabilities‎. ‎Both can be estimated using the Baum-Welch algorithm‎. ‎The process of discovering the sequence of hidden states‎, ‎given the sequence of observations‎, ‎is performed by the Viterbi algorithm‎. ‎In both Baum-Welch and Viterbi algorithms‎, ‎it is assumed that...
متن کاملInvestigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm
Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...
متن کاملHidden Gauss-Markov models for signal classification
Continuous-state hidden Markov models (CS-HMMs) are developed as a tool for signal classification. Analogs of the Baum, Viterbi, and Baum–Welch algorithms are formulated for this class of models. The CS-HMM algorithms are then specialized to hidden Gauss–Markov models (HGMMs) with linear Gaussian state-transition and output densities. A new Gaussian refactorization lemma is used to show that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 90 شماره
صفحات -
تاریخ انتشار 2010